Herbicidal impacts on freshwater zooplankton

Authors

  • Ghosh TS
  • Rana S Department of Zoology, Raniganj Girls’ College, Searsole Rajbari, Paschim Bardhaman, West Bengal, India
  • Pal P Department of Zoology Taki Government College, Taki, West Bengal, India
  • Mallick B Department of Zoology, Raniganj Girls’ College, Searsole Rajbari, Paschim Bardhaman, West Bengal, India

DOI:

https://doi.org/10.70035/ijarts.2023.2136-41

Keywords:

Freshwater zooplankton, Herbicide toxicity, Population dynamic, Reproductive potential, Community structure

Abstract

Application of herbicides is an essential part of agriculture for more crop yields. But their overuse raises the risk of non-target species extinction from freshwater ecosystems. Phytoplanktons, the primary producers in aquatic systems are highly susceptible to herbicide contamination, resulting in disturbance of trophic interactions and energy flow in meta-communities. Persistence of current-use herbicides, dalapon (2 to 3 days), paraquat and diquat (4 to 6 weeks), chlorthiamid (3 months), terbutryne and diuron (>3 months) etc.in pond and river ecosystems can adversely affect plankton community. Interestingly, desphenyl-chloridazon, the metabolite of n-chloridazon is more persistent (>98 days) and more toxic to aquatic planktons. Herbicides such as benfluralin, bensulide, dacthal, ethalfluralin, oxadiazon, pendimethalin, triallate, and trifluralin potentially accumulate in sediments and aquatic biota. Zooplanktons are affected by herbicides directly and indirectly. Herbicides like glyphosate are more toxic to non-target organisms such as Daphnia magna. Some herbicides are potential lethal to amphipods, cladocerans, copepods, malacostracans, and rotifers. Herbicides interfere negatively on the growth, behavior, reproductive potential and population dynamics of zooplanktons. Herbicides (i.e., atrazine) reduce the species abundance and biomass of zooplankton. Atrazine at very low concentration can alter the sex ratio of Daphnia pulicaria. The phenylamide herbicide, propanil interferes growth, survival and reproduction efficiency of D. magna at 0.08 mg/l concentration and its metabolite 3,4-dichloroaniline (3,4-DCA) creates acute lethal inhibition on reproduction rate in D. magna. The sub-lethal effects of herbicides can alter the demographic parameters of zooplanktons. Herbicides inhibit enzyme catalysis, mRNA expression, gene induction and grazing rate of freshwater zooplanktons. Herbicide concentration in freshwater body is very vital for ecosystem productivity and presence of microalgae can reduce the toxicity. So, our review focuses on the harmful effects of several herbicides on different zooplanktons in freshwater ecosystems. Stress enzyme assay and development of more sensitive biomarker are our future scope of study to depict herbicidal effect more precisely.

References

References

Külköylüoğlu O. 2004 On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey. Ecol. Indicators. 4(2): 139–147. https://doi.org/10.1016/j.ecolind.2004.01.004.

Houssou AM., Daguégué EJ. and Montchowui É. 2017 Lethal and sub-lethal effects of cypermethrin and glyphosate on the freshwater’s copepod, Acanthocyclops robustus. Invertebr. Surviv. J. 14(1): 140-148. https://doi.org/10.25431/1824-307X/isj.v14i1.140-148.

Casado-Martínez M., Schneeweiss A., Thiemann C., Dubois N., Pintado-Herrera MG., Lara-Martín PA., Ferrari B. and Werner I. 2019 Écotoxicité des sédiments de ruisseaux. Les pesticides présents dans les sédiments ont des effets surles organismes benthiques. Aqua & Gas Nº 12. 62–71.

Pleto JVR. and Cabillon YC. 2022 Plankton community structure of the aquaculture ponds in Marilao and Meycauayan, Bulacan, Philippines. The Philippine J. Sci. 151(6A). https://doi.org/10.56899/151.6a.05.

Mohr S., Feibicke M., Berghahn R., Schmiediche R. and Schmidt R. 2008 Response of plankton communities in freshwater pond and stream mesocosms to the herbicide metazachlor. Environ. Pollut. 152(3): 530–542. https://doi.org/10.1016/j.envpol.2007.07.010.

Wijewardene L., Wu N., Hörmann G., Messyasz B., Riis T., Hölzel C., Ulrich U. and Fohrer N. 2021 Effects of the herbicides metazachlor and flufenacet on phytoplankton communities – A microcosm assay. Ecotoxicol. Environ. Safety. 228, 113036. https://doi.org/10.1016/j.ecoenv.2021.113036.

Ferrando MD. and Andreu-Moliner E. 1991 Acute lethal toxicity of some pesticides to Brachionus calyciflorus and Brachionus plicatilis. Bull. Environ. Contamination Toxicol. 47(3): 479–484. https://doi.org/10.1007/bf01702214.

Navis S., Waterkeyn A., Voet T., De Meester L. and Brendonck L. 2013 Pesticide exposure impacts not only hatching of dormant eggs, but also hatchling survival and performance in the water flea Daphnia magna. Ecotoxicol. 22(5): 803–814. https://doi.org/10.1007/s10646-013-1080-y.

Oliveria Dos Angos TB., Polazzo F., Arenas-Sánchez A., Cherta L., Ascari R., Migliorati S., Vighi M. and Rico A. 2021 Eutrophic status influences the impact of pesticide mixtures and predation on Daphnia pulex populations. Ecol. Evol. 11(9): 4046–4057. https://doi.org/10.1002/ece3.7305.

Andrade VS., Gutierrez MF., Fantón NI. and Gagneten AM. 2018 Shifts in Zooplankton Behavior Caused by a Mixture of Pesticides. Water Air Soil Pollut. 229: 107. https://doi.org/10.1007/s11270-018-3752-y.

Fleeger JW., Carman KR. and Nisbet RM. 2003 Indirect effects of contaminants in aquatic ecosystems. Sci. Total. Environ. 317(1–3): 207–233. https://doi.org/10.1016/s0048-9697(03)00141-4.

Hanazato T. 2001 Pesticide effects on freshwater zooplankton: an ecological perspective. Environ. Pollut. 112(1): 1–10. https://doi.org/10.1016/s0269-7491(00)00110-x.

Rumschlag SL., Casamatta DA., Mahon MB., Hoverman JT., Raffel TR., Carrick HJ., Hudson PJ. and Rohr JR. 2021 Pesticides alter ecosystem respiration via phytoplankton abundance and community structure: Effects on the carbon cycle? Glob. Chang. Biol. 28(3): 1091–1102. https://doi.org/10.1111/gcb.15952.

Fairchild JF. 2011 Structural and Functional Effects of Herbicides on Non-Target Organisms in Aquatic Ecosystems with an Emphasis on Atrazine. In InTech eBooks. https://doi.org/10.5772/13451.

Brooker MP. and Edwards RW.1973 Effects of the herbicide paraquat on the ecology of a reservoir. Freshwater Biol. 3(2): 157–175. https://doi.org/10.1111/j.1365-2427.1973.tb00070.x.

USGS (U.S. Geological Survey).1999 Pesticides in stream sediment and aquatic biota. Current understanding of distribution and major influences. USGS Fact Sheet 092-00. Sacramento, CA. USA http://water.usgs.gov/nawqa/pnsp/pubs/fs09200/fs09200.pdf.

Maycock D., Crane M., Atkinson C. and Johnson I. 2010 Proposed EQS for Water Framework Directive Annex VIII Substances: Glyphosate (For Consultation); Water Framework Directive—United Kingdom Technical Advisory Group: Edinburgh, Scotland. https://www.wfduk.org/sites/default/files/Media/Glyphosate%20-%20UKTAG.pdf.

Hansen LR. and Roslev P. 2016 Behavioral responses of juvenile Daphnia magna after exposure to glyphosate and glyphosate-copper complexes. Aquat. Toxicol. 179: 36–43. https://doi.org/10.1016/j.aquatox.2016.08.010.

Houssou AM., Cocan D., Răducu C., Daguégué EJ., Mireșan V. and Montchowui É. 2021 Acute and Chronic Effects of a Glyphosate and a Cypermethrin-Based Pesticide on a Non-Target Species Eucypris sp. Vavra, 1891 (Crustacea, Ostracoda). Processes. 9(4): 701.https://doi.org/10.3390/pr9040701.

Deepananda KA., Gajamange D., De Silva W. and Wegiriya H. 2011 Acute toxicity of a glyphosate herbicide, Roundup®, to two freshwater crustaceans. J. National Sci. Found Sri Lanka. 39(2): 169-173. https://doi.org/10.4038/jnsfsr.v39i2.3178.

Lim X., Lai K., Liew HJ. and Loh J. 2019 Acute toxicity of glyphosate on various life stages of calanoid copepod, Pseudodiaptomus annandalei. AsPac J. Mol. Biol. Biotechnol. 27(3): 24–31. https://doi.org/10.35118/apjmbb.2019.027.3.03.

Chu Z., Yi Y., Xu X., Ge Y., Dong L. and Fang C. 2005 Effects of glyphosate on life history characteristics of freshwater rotifer Brachionus calyciflorus. J. Applied Ecol. 16(6): 1142–1145. http://europepmc.org/abstract/MED/16180771.

Meyerhoff RD., Grothe DW., Sauter S. and Dorulla GK. 1985 Chronic toxicity of tebuthiuron to an alga (Selenastrum capricornutum), a cladoceran (Daphnia magna), and the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 4(5): 695–701. https://doi.org/10.1002/etc.5620040513.

Sarma SSS., Nandini S., Pena-Aguado F., Chaparro-Herrera DJ. 2009 Effects of asplanchnin allelochemical onthe toxicity of triasulphuron herbicide to rotifer Brachionus patulus (Rotifera: Brachionidae). Allelopat. J. 23(2): 485-492.

Vulliet E., Emmelin C., Chovelon JM., Chouteau C. and Clement B. 2004 Assessment of the toxicity of triasulfuron and its photoproducts using aquatic organisms. Environ. Toxicol. Chem. 23: 2837-2843. https://doi.org/10.1897/03-486.1.

Kelly MR. 2018 The combined effects of atrazine and tetracycline on primary producers and zooplankton in freshwater microcosms. University Honors Program Thesis. 323.

Moore MT., Pierce JR., Milam CD., Farris JL. and Winchester EL. 1998 Responses of non-target aquatic organisms to aqueous propanil exposure. Bull. Environ. Contam. Toxicol. 61(2): 169-174. https://doi.org/10.1007/s001289900744.

Villarroel MJ., Sancho E., Ferrando MD., Andreu E. 2003 Acute, chronic and sublethal effects of the herbicide propanil on Daphnia magna. Chemosph. 53(8): 857-864. https://doi.org/10.1016/S0045-6535(03)00546-0.

Chen CY., Hathaway KM., Thompson DG. and Folt CL. 2008 Multiple stressor effects of herbicide, pH, and food on wetland zooplankton and a larval amphibian. Ecotoxicol. Environ. Saf. 71(1): 209-218. https://doi.org/209-218. 10.1016/j.ecoenv.2007.08.007.

Sánchez M., Andreu-Moliner E. and Ferrando M. 2004 Laboratory investigation into the development of resistance of Daphnia magna to the herbicide molinate. Ecotoxicol. Environ. Safety. 59(3): 316–323. https://doi.org/10.1016/j.ecoenv.2003.09.003.

Julli M. and Krassoi FR. 1995 Acute and chronic toxicity of the thiocarbamate herbicide, molinate, to the cladoceran Moina australiensis. Sars. Bull. Environ. Contamin. Toxicol. 54(5): 690-694. https://doi.org/10.1007/bf00206100.

Rico-Martínez R., Arias-Almeida JC., Pérez-Legaspi IA., Alvarado-Flores J. and Retes-Pruneda JL. 2012 Adverse effects of herbicides on freshwater zooplankton. In InTech eBooks. https://doi.org/10.5772/33558.

Rioboo C., Prado R., Herrero C. and Cid Á. 2007 Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquat. Toxicol. 83(4): 247–253. https://doi.org/10.1016/j.aquatox.2007.04.006.

Domínguez-Cortinas G., Mejia J., Medrano GES., Rico- Martínez R. 2008 Analysis of the toxicity of glyphosate and Faena® using the freshwater invertebrates Daphnia magna and Lecane quadridentate. Toxicol. Environ. Chem. 90: 377–384. https://doi.org/10.1080/02772240701529038.

Cuppen J., Van Den Brink PJ., Van Der Woude H., Zwaardemaker NG. and Brock T. 1997 Sensitivity of Macrophyte-Dominated freshwater microcosms to chronic levels of the herbicide Linuron. Ecotoxicol. Environ. Safety. 38(1): 25–35. https://doi.org/10.1006/eesa.1997.1556.

Relyea RA. 2005 The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15(2): 618–627. https://doi.org/10.1890/03-5342.

Relyea RA. 2009 A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia. 159(2): 363-376. https://doi.org/10.1007/s00442-008-1213-9.

Vivancos PD., Driscoll SP., Bulman CA., Liu Y., Emami K., Treumann A., Mauve C., Noctor G. and Foyer CH. 2011 Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration. Plant Physiol. 157(1): 256–268.

https://doi.org/10.1104/pp.111.181024.

Leino L., Tuomas T., Marjo H., Irma S., Kari S., Suvi R. and Pere P. 2021 Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. J. Hazard. Mater. 408: 124556. https://doi.org/10.1016/j.jhazmat.2020.124556.

SCBT (Santa Cruz Biotechnology) 2023 Tebuthiuron. https://www.scbt.com/p/tebuthiuron-34014-18-1.

Leboulanger C., Bouvy M., Carre C., Cecchi P., Amalric L., Bouchez A., Pagano M. and Sarazin G. 2011 Comparison of the effects of two herbicides and an insecticide on tropical freshwater plankton in microcosms. Arch. Environ. Contam. Toxicol. 61: 599–613. https://doi.org/10.1007/s00244-011-9653-3.

Li J., Mu J., Bai J., Fu F., Zou T., An F., Zhang J., Jing H., Wang Q., Li Z., Yang S. and Zuo J. 2013 Paraquat Resistant1, a Golgi-localized putative transporter protein, is involved in intracellular transport of paraquat. Plant Physiol. 162(1): 470-83. https://doi.org/10.1104/pp.113.213892.

Cochón AC., Penna A., Kristoff G., Piol MN., Viale L. and Guerrero NRV. 2007 Differential effects of paraquat on oxidative stress parameters and polyamine levels in two freshwater invertebrates. Ecotoxicol. Environ. Safety. 68(2): 286–292. https://doi.org/10.1016/j.ecoenv.2006.11.010.

Islam SS. and Midya S. 2023 Growth regulatory pattern of zooplankton in herbicide and antibiotic contaminated aquatic ecosystem: An overview. Watershed Ecol. Environ. 5: 153- 160. https://doi.org/10.1016/j.wsee.2023.06.001.

Pazmiño DM., Romero-Puertas MC., Sandalio LM. 2012 Insights into the toxicity mechanism of and cell response to the herbicide 2,4-D in plants. Plant Signal Behav. 7(3): 425-7. https://doi.org/10.4161/psb.19124.

Horvat T., Kalafatić M., Kopjar N. and Kovačević G. 2005 Toxicity testing of herbicide norflurazon on an aquatic bioindicator species – the planarian Polycelis felina (Daly.). Aquat. Toxicol. 73(4): 342–352. https://doi.org/10.1016/j.aquatox.2005.03.023.

Boger P. 2003 Mode of action for Chloroacetamides and functionally related compounds. J. Pestic. Sci. 24: 324-329.

Tiwari B., Kharwar S. and Tiwari DN. 2019 Pesticide and rice agriculture. In: Mishra AK, Tiwari DN. and Rai AN. (eds) Cyanobacteria. Academic Press. 303-325. https://doi.org/10.1016/B978-0-12-814667-5.00015-5.

Duke SO. 1990 Overview of herbicide mechanisms of action. Environ. Health Perspectives. 87: 263–271. https://doi.org/10.1289/ehp.9087263.

Prostko EP. and Baughman TA. 1999 Peanut herbicide injury symptomology guide. Texas Agricultural Extension Service, USA.

Gunsolus JL. and Curran WS. 1998 Herbicide mode of action and injury symptoms. North Central Regional Extension Publication No. 377, University of Minnesota Extension Service, USA.

Solomon KR., Baker DB., Richards RP., Dixon KR., Klaine SJ., La Point TW., Kendall RJ., Weisskopf CP., Giddings JM., Giesy JP., Hall LW. and Williams WM. 1996 Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem. 15(1): 31–76. https://doi.org/10.1002/etc.5620150105.

Chang KH., Sakamoto M., Ha JY., Murakami T., Miyabara Y., Nakano SI. and Hanazato T. et al. 2008 Comparative study of pesticide effects (herbicide and fungicide) on zooplankton community. Environ. Sci. 361-366. https://api.semanticscholar.org/CorpusID:210710788.

Dodson SI., Merritt CM., Shannahan J. and Shults CM. 1999 Low exposure concentrations of atrazine increase male production in Daphnia pulicaria. Environ. Toxicol. Chem. 18(7): 1568–1573. https://doi.org/10.1002/etc.5620180732.

Roth SK., Polazzo F., García-Astillero A., Cherta L., Sobek A. and Rico A. 2022 Multiple stressor effects of a heatwave and an herbicide on zooplankton communities: Implications of global climate change. Front. Environ. Sci. 10. https://doi.org/10.3389/fenvs.2022.920010.

PPDB: Pesticide Properties Data Base 2022. Terbuthylazine. University of Hertfordshire. Pesticide Properties Database. https://sitem.herts.ac.uk/aeru/ppdb/en/.

Takacs P., Martin PA. and Struger J. 2002 Pesticides in Ontario: A critical assessment of potential toxicity of agricultural products to wildlife, with consideration for endocrine disruption. Volume 2: Triazine herbicides, Glyphosate and Metolachlor. Technical Report Series No. 369. Canadian Wildlife Service, Ontario Region, Burlington, Ontario, Canada.

Downloads

Published

2023-06-30

How to Cite

Ghosh, T. S., Rana, S., Pal, P., & Mallick, B. (2023). Herbicidal impacts on freshwater zooplankton. International Journal of Advanced Research Trends in Science, 2(1), 36–41. https://doi.org/10.70035/ijarts.2023.2136-41

Issue

Section

Original Research Article

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.